
Convex lattice polygons of fixed area with perimeter-dependent weights

R. Rajesh1,* and Deepak Dhar2

1Department of Physics-Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
2Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India

sReceived 5 March 2003; revised manuscript received 23 August 2004; published 24 January 2005d

We study fully convex polygons with a given area, and variable perimeter length on square and hexagonal
lattices. We attach a weighttm to a convex polygon of perimeterm and show that the sum of weights of all
polygons with a fixed areas varies ass−uconveKstdÎs for larges andt less than a critical thresholdtc, whereKstd
is a t-dependent constant, anduconv is a critical exponent which does not change witht. Using heuristic
arguments, we find thatuconv is 1/4 for the square lattice, but −1/4 for the hexagonal lattice. The reason for
this unexpected nonuniversality ofuconv is traced to existence of sharp corners in the asymptotic shape of these
polygons.
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I. INTRODUCTION

The study of polygons is an important problem in lattice
statistics f1g. It has been studied in the context of self-
avoiding walks, and as a model of the shape transition in
vesiclesf2,3g. The problem is also related to the statistics of
rare large finite clusters in the two dimensional percolation
problemssee belowd. There has been considerable progress
in counting exactly various subclasses of polygons weighted
by area and perimetersseef4,5g and references withind. Re-
cently, the exact critical scaling function of these polygons
has also been foundf6–11g.

Convex polygons are an important subclass of polygons.
They are defined as follows. The area enclosed by a polygon
on a lattice is a simply connected set of elementary
plaquettes or cells of the lattice. A polygon on is said to be
column-convex in a given direction if all the plaquettes along
any line in that direction are connected through plaquettes in
the same line. The polygon is convex if it is column-convex
in both the horizontal and vertical directionsssee Fig. 1d. A
polygon on a hexagonal lattice is said to be convex if it is
column-convex in all its three lattice directionsssee Fig. 2d.

Let Cm,s be the number of convex polygons with perim-
eterm and areas. We define the generating function

Csstd = o
m

Cm,st
m. s1d

For any finites, this is a finite polynomial, and hence con-
vergent. For larges, there exists atc,1 such that for all 0
, t, tc, the leading contribution to the sum in Eq.s1d comes
from polygons whose perimeter is of orderÎs. For the square
lattice tc=1/2. Forthis sum, whent is sufficiently small, it is
straightforward to prove upper and lower bounds that vary as
an exponential ofÎs. It is expected that the leading correc-
tion to the exponential behavior is a power law,

Csstd , s−uconveKstdÎs, s→ `,t , tc, s2d

whereKstd is a t-dependent function, anduconv is a critical
exponent. Whent tends to zero,Kstd tends toC lnstd. For the
square latticeC=4, since the shape that minimizes the sur-
face area is a square with perimeter 4Îs. The power-law
exponentu corresponding to other subclasses of polygons
will be denoted by a suitable subscript.

In this paper, we calculateuconv for convex polygons on
the square and hexagonal lattices by summing over all poly-
gons with a fixed area and weighted by perimeter, and argue
that uconv for the square lattice is 1/4, but for the hexagonal
lattice it is −1/4. We explain this difference by showing that
the asymptotic shape of large convex polygons on square and
hexagonal lattices consist of 4 and 6 cusps respectively. For
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FIG. 1. A typical convex polygon on a square lattice and its
bounding box is shown. All vertical and horizontal straight lines
sdotted in the figured intersect the polygon either 0 or 2 times. The
convex polygon can be thought of as a rectangle from whose cor-
ners some squares have been removed by staircaselike paths.
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a polygon whose macroscopic shape hasn cusps, we conjec-
ture that the value ofu is s5−nd /4.

In the percolation problemsseef12,13g for an introduc-
tiond above the percolation threshold, the probability
Probpssd of finite clusters of sizes in d-dimensions is ex-
pected to vary asf14,15g

Probpssd , s−upercexpf− Bspdssd−1d/dg, s→ `. s3d

Here the exponentuperc is expected to be universal, same for
all p above the critical percolation threshold. For these rare
large clusters in two dimensions, the linear size of a cluster
of s sites varies asÎs. It has a few holes, and the external
boundary of the cluster has overhangs. These are normally
expected to be irrelevant. On ignoring holes, we can model
percolation clusters by hole-less clusters, and Probpssd would
have the same qualitative behavior. In particular, we expect
that uperc=upoly, whereupoly is the value of the exponentu
corresponding to the generating function for all lattice poly-
gons with a fixed area and weighted by perimeter.

The macroscopic shape of rare large finite clusters forp
.pc is convex. Local fluctuations of the surface at a nonzero
angle to thex axis can be well approximated by the fluctua-

tions of a staircase path. As most of the surface of the cluster
has a nonzero finite slope, one may expect that dominant
contribution to Probpssd comes from convex polygons. This
would suggest thatuperc=upoly=uconv. Our results show that
the second equality is wrong. In fact,uconv turns out to be
lattice dependent. For the percolation problem, the presum-
ably exact value of the lattice-independent exponentuperc has
been calculated in all dimensions using techniques of con-
tinuum field theory, within the droplet model which ignores
the holes and overhangs in the clustersf15g. In two dimen-
sionsuperc=5/4 scorresponds ton=0d.

We also mention that in the percolation problem below
the critical threshold, Probpssd,s−u8 expf−Aspdsg when s
→`. In this caseu8 is given by the animal exponent. In two
dimensions, these are described by the behavior of the func-
tion Cs

polystd for t. tc with Cs
polystd,s−u8 exp(K8stds). The ex-

act value ofu8 for undirected animals is 1, 3/2, and 11/6 for
d=2, 3, and 4, respectivelyf16g. The exponentu8 for the
directed animals take on the value 1/2 and 5/6 ford=2 and
3 f17g.

We now briefly review known results for convex poly-
gons. For convex polygons on a square lattice, the exact
two-variable generating functionCst ,zd, defined as

Cst,zd = o
s

Csstdzs, s4d

was calculated by Linf18g and Bousquet-Mélouf19,20g. It
was shown that

Cst,zd = G + 2o
m=2

`

gmo
n=1

m−1

t−2no
p=0

`

fn+p + o
m=3

`

gmSm, s5d

where

gmst,zd = t2mo
n=1

`

st2zdnp
k=1

n

s1 − zkd−2fum−1,n − s2 + zndum−2,n

+ s1 + 2zndum−3,n − znum−4,ng,

uk,nszd = o
r=0

k

p
m1=1

n+r

s1 − zm1d p
m2=1

n+k−r

s1 − zm2d p
m3=1

r

s1 − zm3d−1

3 p
m4=1

k−r

s1 − zm4d−1, k ù 0,

Gst,zd = o
m=1

`

gmst,zd,

Smst,zd = o
n=1

m−2

gnt
−2nsm− n − 1d, s6d

fmst,zd = hm + o
n=2

m

Sn+1F t2z

h18 − h1
fhmshn8 − hmdg

+ dm,nt
2n+2znG ,

FIG. 2. A typical convex polygon on a hexagonal lattice is
shown. Any straight line in the three lattice directionssshown as
dotted linesd intersect the polygon at most twice. The convex poly-
gon can be thought of as 6 blocks carved out by directed staircase-
like paths from a bounding hexagon.
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hnst,zd = t2n+2znS1 + o
m=1

`
s− t2dmzmsm+1+2nd/2

pr=1

m
s1 − zrds1 − t2zrdD

3S1 + o
m=1

`
s− t2dmzmsm+1d/2

pr=1

m
s1 − zrds1 − t2zrdD−1

,

hn8st,zd = t2znS1 + o
m=1

`
s− t2dmzmsm+1+2nd/2

pr=1

m
s1 − zrdst2 − zrdD

3S1 + o
m=1

`
s− t2dmzmsm+1d/2

pr=1

m
s1 − zrdst2 − zrdD−1

.

It is not easy to extract the asymptotic behavior ofCsstd for
larges and fixed small value oft from the complicated ex-
pressions Eqs.s5d and s6d.

The asymptotic behavior of the coefficient oftm in Eq.
s4d, whenz.1, was determined in Ref.f21g. In this case, the
dominant contribution comes from the largests possible,
which is zm2/16 f3g. To be more specific, it was provedf21g
that for fixedz.1

o
s

Cm,sz
s = Aszdzm2/16f1 + srmdg, m→ `, s7d

for somer,1. The functionAszd was shown to behave as

Aszd ,
1

4
S e

2p
D3/2

e2p2/s3ed ase = lnszd → 0+. s8d

We can determineCsstd from osCm,sz
s by

Csstd = o
m

tm
1

2pi
R dz

zs+1o
s

Cm,sz
s. s9d

The above results in Eqs.s7d and s8d are valid whenem
@1. To do the integral in Eq.s9d, we are interested in the
limit when e→0− with m,Îs,1/e. It is not clear how to
extend the results Eqs.s7d ands8d in this regime. However, if
we assumethat the results remain valid qualitatively in this
regime also, and the limits ofm large ande small can be
taken in reverse order, we can estimateCs,t by the method of
steepest descent, assuming that the contour integral is domi-
nated by the saddle point on the real line. This givesCsstd
,s−5/4eÎsKstd. However, these assumptions are hard to justify.
In fact, as we shall show later in the paper, the above answer
is not right. This implies that in the region of interest, the
asymptotic behavior is indeed different and not given by Eqs.
s7d and s8d.

The rest of the paper is organized as follows. In Sec. II,
the exponentuconv is calculated for the square and hexagonal
lattice. In Sec. III, the macroscopic shape of convex poly-
gons is determined. In Sec. IV, the results are extended to
subclasses of convex polygons. In Sec. V, the macroscopic
shape of column-convex polygons is determined. Finally, we
end with a summary and conclusions in Sec. VI.

II. CALCULATION OF THE EXPONENT uconv

Consider convex polygons on a square lattice. A convex
polygon of a given perimeter can be visualized as a bounding
rectangle of the same perimeter from whose corners some
area has been removed by staircaselike pathsssee Fig. 1d.
These staircase paths have the constraint that they cannot
intersect each other. All convex polygons may then be gen-
erated by considering all possible rectangles.

Let Rsz,A,Bd be a generating function such that the co-
efficient ofzs enumerates the number of staircase paths from
s0,Ad to sB,0d enclosing an areas. We then obtain

o
s

Csstdzs = o
xi,yi,L,M

t2sL+MdzLMRsz−1,x1L,y4MdR„z−1,s1 − x3d

3L,s1 − y2dM…R„z−1,s1 − x2d

3L,y1M…R„z−1,x4L,s1 − y3dM…, s10d

whereL and M is the length of the sides of the bounding
rectangle of the convex polygon, andxiL’s andyjM’s denote
the end points of the staircaselike pathsssee Fig. 1d. In writ-
ing down Eq.s10d we have ignored the case when the stair-
cases at two opposite corners may intersect. This will only
make an exponentially small correction and will not modify
the exponentuconv. From the theory of partitionsf22g, it is
known that

Rsz,A,Bd = zA+B−1 szdA+B−2

szdA−1szdB−1
, s11d

where

szdA = p
k=1

A

s1 − zkd. s12d

The asymptotic behavior ofRsz,A,Bd was worked out for
some limiting cases in Ref.f24g. However, these rigorous
results do not carry over to the limits that are of interest in
this paper. Instead, we proceed as follows. The asymptotic
behavior of the coefficient ofzs in Rsz,A,Bd for larges can
be calculated by the method of steepest descent. To evaluate
szdA, we take logarithms on both sides of Eq.s12d and con-
vert the resultant sum into an integral by using the Euler-
Maclaurin sum formulaf23g. This gives

szdA ,
1
Îe

expS1

e
E

e−eA

1

dx
lns1 − xd

x D, e = − lnszd → 0.

s13d

Let the coefficient ofzs in Rsz,A,Bd be denoted by
RssA,Bd. Then,

RssA,Bd =
1

2pi
R Rsz,A,Bd

zs+1 . s14d

We will evaluate this integral by the method of steepest de-
scent. We make the assumption that the contour integral is
dominated by the saddle point close toz=1 on the real line.
This assumption is hard to justify as there are many singu-
larities of the integrand near the saddle point. However, a
similar assumption gives the right answer for unrestricted
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partitions. We would be interested in the limit whenA andB
vary asÎs. Define a=A/Îs and b=B/Îs with a and b re-
maining finite ass→`. Then,

RssA,Bd ,
1

s3/4E da eÎsgsa,a,bd, s15d

where we made the substitutionz=e−a/Îs, and the function
gsa ,a,bd is given by

gsa,a,bd = a +
1

aSEe−asa+bd

1

du
lns1 − ud

u
−E

e−aa

1

du
lns1 − ud

u

−E
e−ab

1

du
lns1 − ud

u D . s16d

The functiongsa ,a,bd has a minimum at somea=a0 where
a0 is a function ofa andb. On doing the integral in Eq.s15d
by the saddle point method, the power law factor gets modi-
fied by a factors−1/4. Thus we obtain

RssA,Bd ,
1

s
expfÎsfsA/Îs,B/Îsdg, s17d

where

fsa,bd = gsa0,a,bd, s18d

with gsa ,a,bd as in Eq.s16d and a0 being that value ofa
which minimizesgsa ,a,bd. The function fsa,ad increases
monotonically from 0 topÎ2/3 whena increases from 1 to
`. The value at infinity,fs` ,`d, corresponds to the result for
unrestricted partitionsf25g. Clearly, the functionfsa,bd is a
monotonically increasing function in both its variables.

From now on, we will consider the case when all the
distances in Fig. 1 scale asÎs, i.e.,L= lÎs andM =mÎs. Also,
each of theNi’s varies linearly withs, i.e., Ni =nis. Equation
s10d then reduces to

Csstd , E p
i=1

4

sdxidyidniddldmsÎsd10s4d„ss1 +o ni − lmd…

3t2Îssl+md 1

s4 expHÎsFÎn1fS x1l
În1

,
y4m
În1

D
+ În2fS s1 − x2dl

În2

,
y1m
În2

DGJ
3 expHÎsFÎn3fS s1 − x3dl

În3

,
s1 − y2dm

În3
D

+ În4fS x4l
În4

,
s1 − y3dm

În4
DGJ , s19d

where thesÎsd10 factor is due to the scaling of the distances,
thes4 factor is due to scaling of theNi’s ands−4 factor is due
to the power law term in the asymptotic formula for parti-
tions. Thus, there is an overall power law factors5.

In the limit of larges, the integrals can be performed by
the saddle point method. We first note that the shape that has
maximum contribution to the integral will have the symme-
try of the square lattice, i.e., the bounding box will be a

square of sidex0
Îs and each of theNi’s will be equal tob0s.

Consider the integration over the variablesx2,y2,x3,y3 about
this shape. Due to the monotonic behavior of the scaling
function fsx,yd, the integrand is maximum with respect to
these four variables at the end points of their limits of inte-
gration, namelyx1,y1,x3,y3, respectively. On doing the
saddle point integration, the contribution touconv in the
power law prefactor from each integration iss−1/2. Thus we
are left with a power law terms3. With respect to the remain-
ing coordinate variablesx1,y1,x3,y3, l ,m, the integrand takes
on it maximum value at a point in the interior of the region
of integration, and each such integration contributes a factor
s−1/4 to the power law prefactor. Thus, after integrating over
all the coordinates, a power law factor ofs3/2 remains.

Now, only the integrals over theni’s remain to be done.
Out of the four integrals, one of them integrates away the
delta function contributing a factors−1, while each of the
others contributes a factors−1/4 to the power law prefactor.
Collecting together these terms, we obtain

Csstd ,
1

s1/4 expH4ÎsFÎb0fS x0

2Îb0

,
x0

2Îb0
D + x0 lnstdGJ .

s20d

By adding all the areas, we havex0
2=1+4b0. We compute the

term in the exponential in Eq.s20d in Sec. III fsee Eq.s29dg.
Equations20d implies that for convex polygons on a square
lattice

uconv
sq =

1

4
. s21d

The above calculation ofuconv can be summarized as fol-
lows. Consider a convex polygon constructed from a bound-
ing box byn staircase pathssn=4 for square latticed. The end
points of the staircase paths can slide along the bounding
box, and each path contributes three coordinates to be inte-
grated over. Out of these 3n coordinates, two of them are
fixed to prevent over counting of polygons which are identi-
cal modulo translations. Thus there are a total ofs3n−2d
coordinates, each one of them varying asÎs, to be integrated
over. Each staircase path also encloses an area, varying ass,
that has to be integrated over. Finally, there is a contribution
s−1 from each such area, corresponding to the enumeration of
staircase paths with fixed ends and fixed area. Thus the inte-
grand has an overall power law factorss3n−2d/2 to start with.
On doing the integrations, the firstn coordinate integrals
contribute a factors−1/2 each as the maximum occurs at the
end points of the integration limits, while the remaining
s2n−2d coordinates contributes−1/4 each. Thus, after the in-
tegration over the coordinates, the power law factor is
ssn−1d/2. The integrations over the areas have the following
contributions. One of them integrates over the delta function,
contributings−1, while each of the other contribute a factor
s−1/4. Taking these corrections into account, we obtain that
uconv for a n-sided convex polygon is
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uconv
n-sided=

5 − n

4
. s22d

We recover the square lattice resultfEq. s21dg whenn=4 in
Eq. s22d

Consider now convex polygons on a hexagonal lattice
ssee Fig. 2d. It is quite straightforward to carry out a similar
analysis as was done for the square lattice. Equivalently, put-
ting n=6 in the expression foruconv for n-sided convex poly-
gons, we obtain

uconv
hex = −

1

4
. s23d

Equationss21d and s23d imply that uconv is not universal for
convex polygons and takes on different values on different
lattices.

III. MACROSCOPIC SHAPE OF CONVEX POLYGONS

The fact thatuconv for the square and hexagonal lattices
comes out different is somewhat unexpected. To understand
the reason for this difference, and why this differs from the
valueuperc=5/4 for percolation clusters, we need to look at
the macroscopic shape of convex polygons. This can be done
exactly using the Wulff constructionf26g. Consider the case
on the square lattice. The equilibrium curve is the one that
extremizes the free energy functional

Lfysxdg =E
0

X

dxssy8dÎ1 + y82 −
2l

Îs
E

0

X

ydx, s24d

wherey8=dy/dx, ssy8d is the orientation dependent surface
tension andl is a Lagrange multiplier. The equilibrium
curvey0sxd satisfies the Euler-Lagrange equation

−
d

dx
S d

dy8
fssy8dÎ1 + y82gD −

2l

Îs
= 0. s25d

The equilibrium macroscopic shape is then obtained by mini-
mizing Lfy0sxdg with respect to the end pointX.

For convex polygons, it is easy to determine the slope
dependent surface tension exactly. It has two contributions:
one coming from the energy of the interface, and one from
the entropy. For an interface havingX horizontal andY ver-
tical steps, the energy per unit length is proportional touXu
+ uYu, and the number of configurations issuXu
+ uYud! / uXu! uYu!. This gives

ssy8dÎ1 + y82 = − s1 + uy8udlns1 + uy8ud + uy8ulnsuy8ud

− s1 + uy8udlnstd. s26d

Following the above procedure, we obtain that the macro-
scopic shape of the staircase satisfies the equation

e−2luyu/Îs + e−2luxu/Îs = t−1, s27d

where the Lagrange multiplierl is the negative root of

l2 = lnstdlnS t

1 − t
D +E

t

1−t

du
lns1 − ud

u
. s28d

At t tends to zero, the shape tends to the square
maxsuxu , uyud=Îs/2. Whent tends to 1/2, thenl tends to zero
and the shape tends touxu+ uyu=Îs/2. Whent=1, The shape
Eq. s27d reduces to that for unrestricted partitionsf27,28g.

The term in the exponential of Eq.s20d can be calculated
by substituting Eqs.s26d–s28d into Eq. s25d. Doing so, we
obtain

Csstd ,
1

s1/4elÎs, s29d

wherel is a function oft determined by Eq.s28d. The equi-
librium shape of a convex polygon enclosing an area 10000
when t=0.15 is shown in Fig. 3. The four staircase paths
intersect each other at a finite angle. The reason why we see
cusps in the macroscopic shape is the term proportional to
uy8ulnsuy8ud in the expression for the direction dependent sur-
face tensionssy8d. This singular term makesssy8d a local
maximum aty8=0, which leads to a cusp. The macroscopic
shape has four cusps due to the fourfold symmetry of the
square lattice.

A similar analysis can be done for convex polygons on a
hexagonal lattice. The surface energyssy8d has qualitatively
the same behavior as for the square lattice. The sixfold sym-
metry of the hexagonal lattice results in 6 cusps for the hex-
agonal convex polygons.

For ordinary percolation, the continuum theory calcula-
tion f15g gives uperc=5/4. On theother hand,uconv for a
n-sided convex polygon takes on the value5/4−n/4. In ad-
dition, the macroscopic shape of an-sided convex polygon
hasn cusps. These cusps are not expected to appear in the

FIG. 3. The equilibrium shape of a convex polygon on a square
lattice enclosing an area 10000 when the perimeter weightt=0.15 is
shown.

CONVEX LATTICE POLYGONS OF FIXED AREA WITH… PHYSICAL REVIEW E 71, 016130s2005d

016130-5



macroscopic shape of percolation clusters. One would pre-
sume that on going beyond the convex polygons approxima-
tion, these cusps would disappear, each contributing a certain
factor to the power law. Thus, puttingn=0 in Eq. s22d, we
recover the result for percolation.

We can similarly determine the value ofudir perc for two-
dimensional directed percolationsseef29g for definition and
an introductiond. Consider directed percolation above the
percolation threshold. Let the infinite cluster have a finite
opening anglep /2−2g, whereg is a function ofp. Then, the
surface tension for surfaces which have slopes tansgd and
tans3p /2−gd is zero. Due to these local minima, and hence
a maximum at zero slope, the macroscopic shape of finite
directed percolation has a cusp at the origin with an opening
anglep /2−2g. Thus,udir perc for directed percolation is ob-
tained by substitutingn=1 in Eq. s22d, yielding

udir perc = 1 in 2 dimensions. s30d

IV. SUBCLASSES OF CONVEX POLYGONS

In this section, we extend the results to subclasses of con-
vex polygons. A directed convex polygon on a square lattice
is a convex polygon for which the lower left corner of the
bounding rectangle is also a vertex of the polygonfsee Fig.
4sadg. As for convex polygons, the area and perimeter
weighted generating function for directed convex polygons is
known f19,20g. We now determine the exponentu in exactly
the same way as was done for convex polygons.

Consider a directed convex polygon. The contribution to
the power law prefactor from the various steps in the power
counting is as follows.s1d The integrand initially has a
power law factorsÎsd8. s2d Integration overx1,y1,x3,y3 con-
tributes s−1/2 each to the power law factor.s3d Integration

overx2,y2, l ,m contributess−1/4 each to the power law factor.
s4d Integration overN1,N2,N3 contributesss−1/4d2s−1 to the
power law factor. Collecting together the various terms, we
obtain

udir conv =
1

2
, s31d

where udir conv is the u corresponding to directed convex
polygons. The macroscopic shape of the directed convex
polygon has three cusps. Not surprisingly, substitutingn=3
in Eq. s22d gives the result in Eq.s31d.

The other subclasses of convex polygons that we study
are staircase polygons, pyramidal polygons, and Ferrers dia-
grams. Staircase polygons are convex polygons for which
both the lower left and upper right corners of the bounding
rectangle are vertices of the polygon. Pyramidal polygons are
convex polygons for which both the lower left and lower
right corners of the bounding rectangle are vertices of the
polygon. Ferrers diagrams are convex polygons for which
the lower left, lower right, and upper left corners of the
bounding rectangle are vertices of the polygons. Examples of
the polygons are shown in Figs. 4sbd–4sdd, respectively. The
area and perimeter generating function of staircase polygons
f30,31g, pyramidal polygonsf27g and Ferrers diagramf22g
are known. The exponentu can be calculated for each one of
them as before. Proceeding on the same lines, we obtain

ustair =
3

4
, s32d

upyramid=
1

2
, s33d

uFerrer =
1

2
. s34d

These correspond to 2, 3 and 3 cusps, respectively, in the
macroscopic equilibrium shape of these polygons.

V. COLUMN CONVEX POLYGONS

In this section, we determine the equilibrium shape of
column-convex polygons and show that it has two cusps. An
example of a column-convex polygon is shown in Fig. 5sad.
The area and perimeter weighted generating function for
column-convex polygons is knownf31g. However, as for
convex polygons, it is difficult to extract from it the
asymptotic behavior of fixed area polygons.

We first calculate the angle dependent surface tension
srsgd, wherey8=tansgd, for column-convex polygons. This
analysis is similar to that done for directed polymersf32g.
Consider all possible directed walks froms0,0d to sx,yd.
Then, the sum over all weighted paths is

e−x secsgdsrsgd = o
y1,. . .,yx

dSo
i=1

x

yi − yDp
i=1

x

t1+uyiu, s35d

where d is the usual Kronecker delta function. Taking
Laplace transform with respect toy, we obtain independent

FIG. 4. Examples ofsad a directed convex polygon,sbd a stair-
case polygon,scd a pyramidal polygon, andsdd Ferrers diagram on
a square lattice.
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summations overyi. These are easily done giving

srsy8dÎ1 + y82 = y8 lnsz0d + ln
s1 − tz0ds1 − tz0

−1d
ts1 − t2d

, s36d

where

z0 =
s1 + t2dy8 + Îs1 − t2d2y82 + 4t2

2ts1 + y8d
. s37d

We see thatsrsy8d is now a smooth function ofy8 for y8 near
zero. For convex polygons, a surface with average orienta-
tion y8=0 cannot have any fluctuations, as the height fluc-
tuations in they direction become the disallowed overhangs
in the x direction. This leads to the singularity neary8=0 in
the expression for orientation dependent surface tension for
convex polygons.

To construct the equilibrium shape of the polygon, we
need to find theysxd satisfying the Euler Lagrange equation
fsee Eq.s25dg with sr and a Lagrange multiplierlr. The
curve ysxd satisfies the boundary conditionys−X/2d=0 and
ysX/2d=0. Solving, we find that the shape of the polygon is
given by

e2lry/Îs = 4ct sinhS lnstd
2

−
lrx
Îs

DsinhS lnstd
2

+
lrx
Îs

D , s38d

wherec is a constant,X=gscdÎs/lr, and

gscd = lnFcs1 + t2d − 1 +Îf1 − cs1 − t2dg2 − 4c2t2

2ct
G .

s39d

The Lagrange multiplierlr is fixed by the constraint that
e−X/2

X/2 ydx=s/2. We obtainlr as a function ofc to be

lr
2 =E

0

gscd

dz lnfcs1 − te−zds1 − tezdg. s40d

The value ofc is chosen to be the one that minimizes the
total surface free energy. For the curve Eq.s38d, the total
surface energyFsc,td is

Fsc,td = 2lr
Îs−

Îs

lr
gscdlnfcts1 − t2dg. s41d

Minimizing Eq. s41d with respect toc, we obtain

c =
1

ts1 − t2d
. s42d

Equationss38d, s40d, and s42d describe the equilibrium
shape of column-convex polygons. In Fig. 5sbd, the shape
when t=0.15 is shown. It has two cusps. Thus we would
conclude from Eq.s22d that

ucol conv =
3

4
. s43d

The height fluctuations of the column-convex polygons be-
come overhangs when viewed after rotation byp /2. On in-
troducing such overhangs, two of the four cusps that were
present in the shape of convex polygons vanished. Thus, one
would expect that if overhangs in the horizontal direction
were also allowed as in self avoiding polygons, then there
would be no cusps, and

upoly =
5

4
. s44d

Finally, we note that the macroscopic shape of column-
convex polygons becomes unstable whensrs0d=0. The
smallest absolute value oft at which this occurs is

tc = Î2 − 1. s45d

This value matches with the previously obtained value fortc
f33,34g.

VI. SUMMARY AND CONCLUSION

To summarize, we studied fixed area convex polygons
weighted by their perimeter on square and hexagonal lattices.
Based on heuristic arguments, the exponentuconv as defined
in Eq. s2d was found to be 1/4 for the square lattice and
−1/4 for the hexagonal lattice. This discrepancy was traced
to the presence of cusps in the macroscopic shape of convex
polygons. We argued that for a polygon whose macroscopic
shape hasn cusps hasun=s5−nd /4. While our arguments are
nonrigorous, we conjecture that these results are correct. For
polygons, one expects that the macroscopic shape has no
cusps. Indeed, puttingn=0 in Eq.s22d, we recover the result
uperc=5/4 obtained for percolation clustersf15g. We also ex-
tended these results to directed percolation in two dimen-
sions sn=1d, directed convex polygonssn=3d, staircase
polygons sn=2d, pyramidal polygonssn=3d, Ferrers dia-
gram,sn=3d and column convex polygonssn=2d.
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FIG. 5. sad A column-convex polygon on a square lattice. Any
line in the vertical direction intersects the polygon at either zero or
two points. sbd The equilibrium macroscopic shape of a column-
convex polygon on a square lattice enclosing an area 10000, when
t=0.15.
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