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Convex lattice polygons of fixed area with perimeter-dependent weights
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We study fully convex polygons with a given area, and variable perimeter length on square and hexagonal
lattices. We attach a weighff' to a convex polygon of perimeten and show that the sum of weights of all
polygons with a fixed areavaries ass %omve('s for larges andt less than a critical threshotd, whereK((t)
is a t-dependent constant, aml,,, is a critical exponent which does not change withJsing heuristic
arguments, we find thai.,,, is 1/4 for the square lattice, but —1/4 for the hexagonal lattice. The reason for
this unexpected nonuniversality 6f,,, is traced to existence of sharp corners in the asymptotic shape of these
polygons.

DOI: 10.1103/PhysRevE.71.016130 PACS nuni$)er05.50:+q, 64.60.Ak

I. INTRODUCTION Cy(t) ~ s7%ongkS g o0t <, (2)

The study of polygons is an important problem in lattice

statistics[1]. It has been studied in the context of self- whereK(t) is at-dependent function, ané, is a critical
avoiding walks, and as a model of the shape transition iyponent. Whem tends to zeroK(t) tends toC In(t). For the
vesicleg 2,3]. The problem is also related to the statistics Ofsquare latticeC=4, since the shape that minimizes the sur-
rare large finite clusters in the two dimensional percolatiory,.e area is a square with perimeteys4 The power-law

problem (see below. There has been considerable progress,ynonents corresponding to other subclasses of polygons
in counting exactly various subclasses of polygons weightegi pe denoted by a suitable subscript.

by area and perimetésee[4,5] and references withjn Re- In this paper, we calculaté,,, for convex polygons on

cently, the exact critical scaling function of these polygonsy,o square and hexagonal lattices by summing over all poly-
has also been foun®-11. gons with a fixed area and weighted by perimeter, and argue
Convex polygons are an important subclass of polygonsyat g “for the square lattice is 1/4, but for the hexagonal
They are defined as follows. The area enclosed by a polygopice it is —1/4. We explain this difference by showing that
on a lattice is a simply connected set of elementaryye asymptotic shape of large convex polygons on square and

plaquettes or cells of the lattice. A polygon on is said to béyeyaqonal lattices consist of 4 and 6 cusps respectively. For
column-convex in a given direction if all the plaquettes along

any line in that direction are connected through plaquettes in
the same line. The polygon is convex if it is column-convex
in both the horizontal and vertical directiofsee Fig. 1 A
polygon on a hexagonal lattice is said to be convex if it is Ny
column-convex in all its three lattice directiofsee Fig. 2

Let Cp,s be the number of convex polygons with perim- (0.y;M)
eterm and areas. We define the generating function

(0. M) (4L, M) (5L, M) (L.M)

Ny

(L. M)

For any finites, this is a finite polynomial, and hence con- (L.yi M)
vergent. For larges, there exists d.<1 such that for all 0

<t<t,, the leading contribution to the sum in HG) comes  (0.u:3)
from polygons whose perimeter is of ordes. For the square

latticet,=1/2. Forthis sum, whert is sufficiently small, it is N
straightforward to prove upper and lower bounds that vary as
an exponential ofis. It is expected that the leading correc-  (0.0) {21L.0) ' (2 L.0) (L-0)

tion to the exponential behavior is a power law,

N,

Cit) = > Crd™ (1)

FIG. 1. A typical convex polygon on a square lattice and its
bounding box is shown. All vertical and horizontal straight lines
(dotted in the figurgintersect the polygon either 0 or 2 times. The
*Present address: Martin Fisher School of Physics, Brandeis Unieonvex polygon can be thought of as a rectangle from whose cor-
versity, Mailstop 057, Waltham, MA 02454-9110, USA. ners some squares have been removed by staircaselike paths.
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tions of a staircase path. As most of the surface of the cluster
has a nonzero finite slope, one may expect that dominant
contribution to Prol(s) comes from convex polygons. This
would suggest thabye,c= Opoly= Ocon,- OUr results show that
the second equality is wrong. In fadi,,,, turns out to be
lattice dependent. For the percolation problem, the presum-
ably exact value of the lattice-independent exporiggt has
been calculated in all dimensions using techniques of con-
tinuum field theory, within the droplet model which ignores
the holes and overhangs in the clustgt§]. In two dimen-
SioNS Gperc=5/4 (corresponds te=0).

We also mention that in the percolation problem below
the critical threshold, Prgbs)~s“” exd-A(p)s] when s
— oo, In this cased’ is given by the animal exponent. In two
dimensions, these are described by the behavior of the func-
tion CPY(t) for t>t, with CPY(t) ~s™¢ exp(K'()s). The ex-
act value of¢’ for undirected animals is 1, 3/2, and 11/6 for

d=2, 3, and 4, respectivelf16]. The exponent’ for the
directed animals take on the value 1/2 and 5/6ds2 and
3[17].

We now briefly review known results for convex poly-

two-variable generating functio@(t, z), defined as
C(t,2) = X C{H7Z, (4)
S

was calculated by Lif18] and Bousquet-Mélo(i19,20Q. It
was shown that

) m1 [ )
Clt,2=G+2 720 frip+ , (5
FIG. 2. A typical convex polygon on a hexagonal lattice is (t.2) m2=2 gmgl % mP zs O~ (5)
shown. Any straight line in the three lattice directiofshown as
dotted lineg intersect the polygon at most twice. The convex poly- Where
gon can be thought of as 6 blocks carved out by directed staircase- % n
like paths from a bounding hexagon. -
P 9 nexad (6,2 = 2" (22" ] (1 =29ty 10~ (2 +2) Uy 2
n=1 k=1

a polygon whose macroscopic shape hasisps, we conjec-
ture that the value ob is (5-n)/4.

In the percolation problentsee[12,13 for an introduc- K ner tker ,
tion) above the percolation threshold, the probability _ _ o m ma-1
Prohy(s) of finite clusters of sizes in d-dimensions is ex- Un(2) =2 Il a-zm 11 a-2 2)m3:1(1 ")
pected to vary afl4,15

+(1+ 2Zn)um—’a‘,n - Znum—4,n]u

r=0 mp=1 my=1
k-r

Proly(s) ~ s hecex{-B(p)s*™V], s—w». (3 x [ @1-2m71, k=0,
Here the exponent, is expected to be universal, same for et
all p above the critical percolation threshold. For these rare o
large clusters in two dimensions, the linear size of a cluster G(t,2=D 9n(t,2),
of s sites varies ag's. It has a few holes, and the external m=1
boundary of the cluster has overhangs. These are normally
expected to be irrelevant. On ignoring holes, we can model m-2
percolation clusters by hole-less clusters, and Rsplwould Sy(t,2) = 2 gt (m-n-1), (6)
have the same qualitative behavior. In particular, we expect n=1

that Operc= Opor, Where 6 is the value of the exponert

corresponding to the generating function for all lattice poly- m t27

gons with a fixed area and weighted by perimeter. fm(t,2) =h,+ 2 St m[hm(h,’1 -hy)]
The macroscopic shape of rare large finite clusterspfor n=2 11

> p, is convex. Local fluctuations of the surface at a nonzero o

angle to thex axis can be well approximated by the fluctua- + Ol 2|,
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(= 2)mgnmeL20/2 ) Il. CALCULATION OF THE EXPONENT 6oy

— ¢2n+
ho(t,2) = £ Zzn(l +n§1 Hm (1-7)(1-t%7) Consider convex polygons on a square lattice. A convex
r=1 polygon of a given perimeter can be visualized as a bounding
o (= t2)mgmime1)12 -1 rectangle of the same perimete_r from_whose corners some
X[ 1+ - area has been removed by staircaselike p&hbe Fig. 1
m=1 Hr:l(l -Z)(1-t%7) These staircase paths have the constraint that they cannot
intersect each other. All convex polygons may then be gen-
erated by considering all possible rectangles.
(— t2)mzmime1+20)/2 ) Let R(z,A,B) be a generating function such that the co-

efficient of Z2 enumerates the number of staircase paths from
(0,A) to (B,0) enclosing an area. We then obtain

* mom(m+ -1
ol 1+ E (_ t2) v (m+1)/2 . E Cs(t)zs= E tZ(L+M)ZLMR(Z_l,XlL,y4M)R(Z_1,(1 —X3)
i [ (1-2)(2-2) s XYM

h/(t,2) =t?2"| 1
“2 Z( +n§1H21(1—z')(t2—zr)

XL, (1 =y M)R(Z (1 -%y)
It is not easy to extract the asymptotic behavioiGaft) for -1 _
large s and fixed small value of from the complicated ex- XLYIMIREZE XL, (1 =y2)M), (10
pressions Eq95) and (6). whereL and M is the length of the sides of the bounding
The asymptotic behavior of the coefficient Of in Eq.  rectangle of the convex polygon, ard’s andy;M’s denote
(4), whenz> 1, was determined in Ref21]. In this case, the the end points of the staircaselike pathee Fig. L In writ-
dominant contribution comes from the largestpossible, ing down Eq.(10) we have ignored the case when the stair-

which is z716 [3]. To be more specific, it was provédi] cases at two opposite corners may intersect. This will only

that for fixedz>1 make an exponentially small correction and will not modify
the exponentd,,,,. From the theory of partitionf22], it is
3 CnZ=A@ZT ML+ (pM], m—w, (7 Knownthat
S
2)are-
R(z,A,B) = f*B—lw, (12)
for somep< 1. The functionA(z) was shown to behave as (D p-1(2)g-1
where

1/ € 3/2
A(z) ~ 4_1<2_> ™39 ase=In(z) —0".  (8) A
i @a=11(1-29. (12)
We can determin€(t) from =, Z° by k=1
The asymptotic behavior ¢¥(z, A,B) was worked out for
1 dz some limiting cases in Ref24]. However, these rigorous
Cyt) = > tmg Zs_+12 CmsZ 9) results do not carry over to the limits that are of interest in
m s this paper. Instead, we proceed as follows. The asymptotic
The above results in Eq¢7) and (8) are valid whenem behavior of the coefficient af in R(z,A,B) for larges can
>1. To do the integral in Eq(9), we are interested in the P€ calculated by the method of steepest descent. To evaluate
limit when e— 0~ with m~ ys~ 1/e. It is not clear how to (& We take logarithms on both sides of H42) and con-
extend the results Eq€7) and(8) in this regime. However, if Vert the resultant sum into an integral by using the Euler-
we assumehat the results remain valid qualitatively in this Maclaurin sum formuld23]. This gives

regime also, and the limits ah large ande small can be 1 11! In(1-x)
(2)p~ —= ex —f dx , €=-In(2) — 0.
Ve € e*eA X

taken in reverse order, we can estim&tg by the method of
steepest descent, assuming that the contour integral is domi-
nated by the saddle point on the real line. This gizz&) (13

 «5l4aVsK(t) . L
eV However, these assumptions are hard to justify. - :
In fact, as we shall show later in the paper, the above answ<?:55(l‘et the coefficient ofz> in R(z,A,B) be denoted by

is not right. This implies that in the region of interest, the A,B). Then,
asymptotic behavior is indeed different and not given by Egs. 1 R(z,A,B)
(7) and(8). RJ(A,B) = Py % e (14)

The rest of the paper is organized as follows. In Sec. Il,
the exponent,,, is calculated for the square and hexagonalWe will evaluate this integral by the method of steepest de-
lattice. In Sec. Ill, the macroscopic shape of convex poly-scent. We make the assumption that the contour integral is
gons is determined. In Sec. IV, the results are extended tdominated by the saddle point closezel on the real line.
subclasses of convex polygons. In Sec. V, the macroscopithis assumption is hard to justify as there are many singu-
shape of column-convex polygons is determined. Finally, wdarities of the integrand near the saddle point. However, a
end with a summary and conclusions in Sec. VI. similar assumption gives the right answer for unrestricted
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partitions. We would be interested in the limit wharandB  square of side(O\s‘E and each of thé&\;'s will be equal toSs.
vary asys. Definea=A/\s andb=B/\s with a andb re-  Consider the integration over the variabiesy,, X3, y; about

maining finite ass— . Then, this shape. Due to the monotonic behavior of the scaling
function f(x,y), the integrand is maximum with respect to

R(A,B) ~ % f da e'S9@ab) (15)  these four variables at the end points of their limits of inte-
s? gration, namelyx;,y1,X3,Y3, respectively. On doing the

saddle point integration, the contribution #,, in the
power law prefactor from each integrationss”2. Thus we
are left with a power law terre®. With respect to the remain-
1/ (* In(1-u) ! In(1-u) ing coordinate variables,,y;,Xs,Y3,l,m, the integrand takes
g(a,ab)=a+ ;(f du——— ‘J du——— on it maximum value at a point in the interior of the region
of integration, and each such integration contributes a factor
fl duIn(1 —u)) s to the power law prefactor. Thus, after integrating over

where we made the substitutiarxe‘“"‘g, and the function
g(a,a,b) is given by

—a(a+b) u

e —aa

e

(16) all the coordinates, a power law factor $f? remains.

Now, only the integrals over the’s remain to be done.
The functiong(a,a,b) has a minimum at some=ay where  Out of the four integrals, one of them integrates away the
ap is a function ofa andb. On doing the integral in Eq15)  delta function contributing a factcs™, while each of the
by the saddle point method, the power law factor gets modiothers contributes a factar Y4 to the power law prefactor.

e—ab u

fied by a factors™4 Thus we obtain Collecting together these terms, we obtain
1 - - -
R(A,B) ~ — exd Vsf(A/\s,B/Vs)], (17)
S 1 | A Xo Xo
Ct) ~ 77 exp{4\s{ \/Bof(?,?) +X In(t)] } :
where S 2VBo 2VBo
f(a,b) = glag,ab), (18) (20

with g(«,a,b) as in Eq.(16) and «, being that value ofx _
which minimizesg(a,a,b). The functionf(a,a) increases BY adding all the areas, we haxg=1+48,. We compute the
monotonically from O tory2/3 whena increases from 1 to term in the ex_ponfannal in Eq20) in Sec. lli[see Eq(29)].
«. The value at infinityf (=<, ), corresponds to the result for EAuation(20) implies that for convex polygons on a square
unrestricted partition25]. Clearly, the functiorf(a,b) is a lattice
monotonically increasing function in both its variables.

From now on, we will_consider t_he case when all the 1
distances in Fig. 1 scale &s, i.e.,L=I\ysandM=mys. Also, Oaor = - (21)
each of theN;’s varies linearly withs, i.e., N;=n;s. Equation 4

(10) then reduces to The above calculation of,,,, can be summarized as fol-
points of the staircase paths can slide along the bounding
e L == X ysm
X2 m = ex \s{ \n1f<—1_,yj‘—_ ) : _ | are
S VN Vg fixed to prevent over counting of polygons which are identi-
VN Ny over. Each staircase path also encloses an area, varysg as

lows. Consider a convex polygon constructed from a bound-
) box, and each path contributes three coordinates to be inte-
— ((1=-%)l y;m cal modulo translations. Thus there are a total(&rfi-2)
+ \hzf( 2 l_):|
p{ ,_{ — ((1 -xa)l (1 _yz)m) that has to be integrated over. Finally, there is a contribution
X expy Vs = ==

Cy(t) ~ ﬁ (dxidyidni)dldnw(w"g)los4§(s(l +on - Im)) ing box byn staircase path@&=4 for square lattice The end
i=1
grated over. Out of thesen3coordinates, two of them are
——, = coordinates, each one of them varying\sgxsto be integrated
Vngf s ! from each such area, corresponding to the enumeration of

VN3 VN3

staircase paths with fixed ends and fixed area. Thus the inte-
— (%] (1-ysm grand has an overall power law factgf"2/2 to start with.
+ N NN ' (19 On doing the integrations, the first coordinate integrals
~ Vs s contribute a factos /2 each as the maximum occurs at the
where the(\'s)!° factor is due to the scaling of the distances,end points of the integration limits, while the remaining
the s* factor is due to scaling of thi;’'s ands™ factor is due  (2n—2) coordinates contributs™/* each. Thus, after the in-
to the power law term in the asymptotic formula for parti- tegration over the coordinates, the power law factor is
tions. Thus, there is an overall power law facsr sY2 The integrations over the areas have the following
In the limit of larges, the integrals can be performed by contributions. One of them integrates over the delta function,
the saddle point method. We first note that the shape that hasntributings™, while each of the other contribute a factor
maximum contribution to the integral will have the symme-s /4 Taking these corrections into account, we obtain that
try of the square lattice, i.e., the bounding box will be a6, for an-sided convex polygon is
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g

« 5-n
o™= (22) o

We recover the square lattice resiig. (21)] whenn=4 in
Eq. (22 407

Consider now convex polygons on a hexagonal lattice
(see Fig. 2 It is quite straightforward to carry out a similar
analysis as was done for the square lattice. Equivalently, put: 207
ting n=6 in the expression fof,,,, for n-sided convex poly-
gons, we obtain

1
Ooon == 5 (23

Equations(21) and(23) imply that 6., is not universal for
convex polygons and takes on different values on different
lattices.

Ill. MACROSCOPIC SHAPE OF CONVEX POLYGONS

_60 L
The fact thatf.,,, for the square and hexagonal lattices

comes out different is somewhat unexpected. To understand FIG. 3. The equilibrium shape of a convex polygon on a square
the reason for this difference, and why this differs from thelattice enclosing an area 10000 when the perimeter weigitl5 is
value fpe=5/4 for percolation clusters, we need to look at shown.

the macroscopic shape of convex polygons. This can be done

exactly using the Wulff constructiof26]. Consider the case t a1 -u)
on the square lattice. The equilibrium curve is the one that e In(t)ln(—) +f du——-.
extremizes the free energy functional - t

(28

X X At t tends to zero, the shape tends to the square
Llyx)]= f dxo(y' )1 +y'2- z_)jf ydx, (240 max(x,|y))=vs/2. Whent tends to 1/2, then tends to zero
0 'sJo and the shape tends pg+|y|=\s/2. Whent=1, The shape
Eqg. (27) reduces to that for unrestricted partitiory,28.
wherey’=dy/dx, o(y’) is the orientation dependent surface  The term in the exponential of E€0) can be calculated
tension and\ is a Lagrange multiplier. The equilibrium py substituting Eqs(26)—(28) into Eq. (25). Doing so, we

curveyy(x) satisfies the Euler-Lagrange equation obtain
d( d ——) 2\ L \s
- —| —[o(y)V1+ ,2>_—r:0. 25 Ct) ~ € (29)
dx( dy’[a(y W1+yTd \'s (29 ) s

- . . . . .where\ is a function oft determined by Eq(28). The equi-

The_ equilibrium macroscopic shape is then obtained by MM iprium shape of a convex polygon enclosing an area 10000

mizing Lyo(x)] with respef:t 'to the end point. . when t=0.15 is shown in Fig. 3. The four staircase paths
For convex polygons_, it is easy to determine th'e S!Opei_ntersect each other at a finite angle. The reason why we see

dependent surface tension exactly. It has two contnbuﬂonq:usps in the macroscopic shape is the term proportional to

one coming from the energy of the interface, and one frony: i (|y/|) in the expression for the direction dependent sur-
the entropy. For an interface havixghorizontal andyY ver- face tensiono(y’). This singular term makes(y’) a local

tical steps, the energy per unit length is proportionalXp maximum aty’ =0, which leads to a cusp. The macroscopic

:m;'/‘;ﬂ?\(“ trﬁ“s n:ilrgsl?er of  configurations  is(|X| shape has four cusps due to the fourfold symmetry of the
TAAELE 9 square lattice.
N e , , , , A similar analysis can be done for convex polygons on a
oy WWL+y" === (L +|y'DIn(L +[y]) +|y"[Inly"]) hexagonal lattice. The surface eneigfy’) has qualitatively
- (1 +|y'])In(t). (26) the same behavior as for the square lattice. The sixfold sym-
metry of the hexagonal lattice results in 6 cusps for the hex-
Following the above procedure, we obtain that the macroagonal convex polygons.

scopic shape of the staircase satisfies the equation For ordinary percolation, the continuum theory calcula-
B _ tion [15] gives 6,e=5/4. On theother hand,f.,,, for a
g 2INs 4 g2 XS = -1 (27)  n-sided convex polygon takes on the vakigt—-n/4. In ad-
dition, the macroscopic shape ofnasided convex polygon
where the Lagrange multiplier is the negative root of hasn cusps. These cusps are not expected to appear in the
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(0. 30) (rofd) tnld) M) overx,,Y,,|, mcontributess /4 each to the power law factor.

! (4) Integration ovem;,N,,N; contributes(s™4?s™* to the

! power law factor. Collecting together the various terms, we
obtain

Ny

(L.y2 M)

1
Gdir conw = 5’ (31

(0,330

where O con, 1S the 6 corresponding to directed convex
e S T T Tmmmmme s polygons. The macroscopic shape of the directed convex
(0.0 (1L.0) (L.0) .. L
(@ (b) polygon has three cusps. Not surprisingly, substituting8

f——- - 7----- A TT----------- 1 in Eq. (22) gives the result in Eq(31).

The other subclasses of convex polygons that we study
are staircase polygons, pyramidal polygons, and Ferrers dia-
grams. Staircase polygons are convex polygons for which
both the lower left and upper right corners of the bounding
rectangle are vertices of the polygon. Pyramidal polygons are
convex polygons for which both the lower left and lower
right corners of the bounding rectangle are vertices of the
polygon. Ferrers diagrams are convex polygons for which
the lower left, lower right, and upper left corners of the

FIG. 4. Examples ofa) a directed convex polygortb) a stair-  bounding rectangle are vertices of the polygons. Examples of
case polygon(c) a pyramidal polygon, an¢) Ferrers diagram on the polygons are shown in Figs(b}-4(d), respectively. The
a square lattice. area and perimeter generating function of staircase polygons
[30,31], pyramidal polygong27] and Ferrers diagrarf22]

macroscopic shape of percolation clusters. One would preare known. The exponeritcan be calculated for each one of
sume that on going beyond the convex po|ygons approximéhem as before. Proceedlng on the same ||neS, we obtain
tion, these cusps would disappear, each contributing a certain 3
factor to the power law. Thus, putting=0 in Eq.(22), we Ostair =~ (32
recover the result for percolation. 4

We can similarly determine the value 6§ e, for two-
dimensional directed percolatigeee[29] for definition and 1

(c) (d)

an introductiof. Consider directed percolation above the apyram‘d_i’ (33)
percolation threshold. Let the infinite cluster have a finite

opening angler/2 -2y, wherevy is a function ofp. Then, the 1

surface tension for surfaces which have slopegstaand Oferrer = > (34)

tan3w/2-1y) is zero. Due to these local minima, and hence

a maximum at zero slope, the macroscopic shape of finitdhese correspond to 2, 3 and 3 cusps, respectively, in the
directed percolation has a cusp at the origin with an openingnacroscopic equilibrium shape of these polygons.
anglem/2—2y. Thus, 64 perc for directed percolation is ob-

tained by substitutingi=1 in Eq.(22), yielding V. COLUMN CONVEX POLYGONS

Odir perc=1 in 2 dimensions. (30) In this section, we determine the equilibrium shape of
column-convex polygons and show that it has two cusps. An
example of a column-convex polygon is shown in Figg)5

IV. SUBCLASSES OF CONVEX POLYGONS The area and perimeter Welghted generating function for
column-convex polygons is knowfB81]. However, as for

In this section, we extend the results to subclasses of cortonvex polygons, it is difficult to extract from it the
vex polygons. A directed convex polygon on a square latticeasymptotic behavior of fixed area polygons.
is a convex polygon for which the lower left corner of the e first calculate the angle dependent surface tension
bounding rectangle is also a vertex of the polygeee Fig.  ¢,(y), wherey’ =tan(y), for column-convex polygons. This
4(a)]. As for convex polygons, the area and perimeteranalysis is similar to that done for directed polymgsg].
weighted generating function for directed convex polygons isConsider all possible directed walks frof0,0) to (x,y).
known[19,20. We now determine the exponefitn exactly  Then, the sum over all weighted paths is
the same way as was done for convex polygons. y §

Consider a directed convex polygon. The contribution to ~
the power law prefactor from the various steps in the power ex e = N 5(2 Yi— y)H il (35)
counting is as follows.(1) The integrand initially has a Yiro¥x A= =1
power law factor(\'s)®. (2) Integration ovex,,y;,Xs, Y3 COn-  where § is the usual Kronecker delta function. Taking
tributes /2 each to the power law facto(3) Integration  Laplace transform with respect §o we obtain independent
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y 3% f

[ | I \“S
] F(c,t) = 2\, \s- ;\—g(c)ln[ct(l -1)]. (41)
| 2 r
] Minimizing Eqg. (41) with respect tcc, we obtain
X 1
DU ; x =—. 42
; : ¢ li-D (42

Equations(38), (40), and (42) describe the equilibrium
shape of column-convex polygons. In Figbh the shape
when t=0.15 is shown. It has two cusps. Thus we would
conclude from Eq(22) that

FIG. 5. (a) A column-convex polygon on a square lattice. Any
line in the vertical direction intersects the polygon at either zero or
two points. (b) The equilibrium macroscopic shape of a column-
convex polygon on a square lattice enclosing an area 10000, wh
t=0.15.

3
Ocol cov = Z (43)

®fhe height fluctuations of the column-convex polygons be-

come overhangs when viewed after rotation#A2. On in-

] ) o troducing such overhangs, two of the four cusps that were
summations ovey;. These are easily done giving present in the shape of convex polygons vanished. Thus, one
1 —tzo)(l—tzgl) would expect that if overhangs in the horizontal direction

o (y)V1+y'2=y" In(z) +In , (36) were also allowed as in self avoiding polygons, then there

t(1-t) would be no cusps, and
where , 5 »
_arty G-y by = 5 49
2t(1+y’) ' Finally, we note that the macroscopic shape of column-

convex polygons becomes unstable whef{0)=0. The

We see thatr(y’) is now a smooth function of’ for y’ near . ) .
) o Y Ssmallest absolute value ofat which this occurs is

zero. For convex polygons, a surface with average orient
tion.y’:(.) cannot haye any fluctuations, as the height fluc- t.= \5 -1. (45)
tuations in they direction become the disallowed overhangs
in the x direction. This leads to the singularity neg=0 in ~ This value matches with the previously obtained valuetfor
the expression for orientation dependent surface tension fd83,34.
convex polygons.

To construct the equilibrium shape of the polygon, we
need to find they(x) satisfying the Euler Lagrange equation VI. SUMMARY AND CONCLUSION
[see Eq.(25] with ¢, and a Lagrange multipliek,. The
curve y(x) satisfies the boundary conditigri-X/2)=0 and
y(X/2)=0. Solving, we find that the shape of the polygon is
given by

To summarize, we studied fixed area convex polygons
weighted by their perimeter on square and hexagonal lattices.
Based on heuristic arguments, the expongpt, as defined
in Eq. (2) was found to be 1/4 for the square lattice and

- (I nAx\ . (In®) Ax —1/4 for the hexagonal lattice. This discrepancy was traced
eMYIS = 4ot sm?'<7 - 7)8"‘17‘(7 + _/—> (38) to the presence of cusps in the macroscopic shape of convex
VS VS polygons. We argued that for a polygon whose macroscopic

wherec is a constantX=g(c)\'s/\,, and shape has cusps ha®),=(5-n)/4. While our arguments are
nonrigorous, we conjecture that these results are correct. For
c(1+t2) - 1+[1 -c(1 -t} ]2 - 4c?t? polygons, one expects that the macroscopic shape has no

g(©)=In 2ct ' cusps. Indeed, putting=0 in Eq.(22), we recover the result

(39) Operc=5/4 obtained for percolation clustef$5]. We also ex-
tended these results to directed percolation in two dimen-
The Lagrange multiplien, is fixed by the constraint that Sions (n=1), directed convex polygongn=3), staircase
X2 ydx=s/2. We obtain\, as a function ot to be polygons (n=2), pyramidal polygons(n=3), Ferrers dia-
gram, (n=3) and column convex polygon®=2).

g(c)
A= J dzIn[c(1 -te)(1 -te?)]. (40)
0
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